数学公式是数学题目解题关键,那么向量的运算公式有哪些呢?快来和我一起看看吧。下面是由我为大家整理的“向量的运算的所有公式”,仅供参考,欢迎大家阅读。
向量的运算的所有公式
向量的加法满足平行四边形法则和三角形法则, 向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0,0的反向量为0,OA-OB=BA.即“共同起点,指向被减”a=(x1,y1),b=(x2,y2) ,则a-b=(x1-x2,y1-y2)。
在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。向量的加法满足平行四边形法则和三角形法则,向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0,0的反向量为0,OA-OB=BA.即“共同起点,指向被减”a=(x1,y1),b=(x2,y2) ,则a-b=(x1-x2,y1-y2)。
数与向量的乘法满足下面的运算律:
结合律:(λa)·b=λ(a·b)=(a·λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。
向量的数量积的运算律:
a·b=b·a(交换律)
(λa)·b=λ(a·b)(关于数乘法的结合律)
(a+b)·c=a·c+b·c(分配律)
向量的向量积运算律:
a×b=-b×a
(λa)×b=λ(a×b)=a×(λb)
a×(b+c)=a×b+a×c.
(a+b)×c=a×c+b×c.
拓展阅读:向量的表达方式
1.代数表示
一般印刷用黑体的小写英文字母(a、b、c等)来表示,手写用在a、b、c等字母上加一箭头(→)表示,也可以用大写字母AB、CD上加一箭头(→)等表示。
2.几何表示
向量可以用有向线段来表示。有向线段的长度表示向量的大小,向量的大小,也就是向量的长度。长度为0的向量叫做零向量,记作长度等于1个单位的向量,叫做单位向量。箭头所指的方向表示向量的方向。
3.坐标表示
在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底。a为平面直角坐标系内的任意向量,以坐标原点O为起点作向量OP=a。由平面向量基本定理可知,有且只有一对实数(x,y),这就是向量a的坐标表示。其中(x,y)就是点P的坐标。向量OP称为点P的位置向量。
两个向量相乘公式:向量a?向量b =|向量a|*|向量b|*cos,设向量a=(x1,y1),向量b=(x2,y2),|向量a|=√(x1^2+y1^2),|向量b|=√(x2^2+y2^2)。 ? ?
向量的乘积公式
向量a=(x1,y1),向量b=(x2,y2)
a·b=x1x2+y1y2=|a||b|cosθ(θ是a,b夹角)
PS:向量之间不叫"乘积",而叫数量积..如a·b叫做a与b的数量积或a点乘b
向量积公式
向量积|c|=|a×b|=|a||b|sin<a,b>
向量相乘分内积和外积
内积 ab=丨a丨丨b丨cosα(内积无方向,叫点乘)
外积 a×b=丨a丨丨b丨sinα(外积有方向,叫×乘)那个读差,即差乘,方便表达所以用差。
另外 外积可以表示以a、b为边的平行四边形的面积
=两向量的模的乘积×cos夹角
=横坐标乘积+纵坐标乘积
扩展资料
向量的定义:是数学、物理学和工程科学等多个自然科学中的基本概念。指一个同时具有大小和方向,且满足平行四边形法则的几何对象。
两个向量的数量积(内积、点积)是一个数量(没有方向),记作a·b。向量的数量积的坐标表示:a·b=x·x'+y·y'。
两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里“×”并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”)。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b垂直,则∣a×b∣=|a|*|b|
在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。
几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。
本文来自作者[笑阳]投稿,不代表秒搜号立场,如若转载,请注明出处:https://ms80.net/ms/11938.html
评论列表(4条)
我是秒搜号的签约作者“笑阳”!
希望本篇文章《向量的运算的所有公式》能对你有所帮助!
本站[秒搜号]内容主要涵盖:生活百科,小常识,生活小窍门,知识分享
本文概览: 数学公式是数学题目解题关键,那么向量的运算公式有哪些呢?快来和我一起看看吧。下面是由我为大家整理的“向量的运算的所有公式”,仅供参考,欢迎大家阅读。 向量的运算的所有公式...